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The solution of some two-dimensional nonstationary problems on the motion of
two plane pistons in a polytropic gas are constructed.

1. Let the polvtropic gas with the equation of state p = a*p’ (p 1s
the pressure, p the density, vy the adiabatic index, @®= const) be at
rest at the initial instant ¢ = O within some dihedral angle formed by the
two intersecting planes P, and P, , the angle a between them satisfyilng
the relation O < g < #r . We shall consider the problem of determining the
nonstationary plane flows which arise in the gas when the planes P, and »F,,
which play the role of pistons, begin at the lnstant ¢ = O to move out of
the gas at the constant velocities v, and v,, respectively. The resulting
flowe are two-dimensional and self~similar, sc that the components u, and
ug of the velocity vector and the acoustic speed ( which are to be deter-
mined depend on the two independent self-similar variables £, = 2,/¢,
2= 3/ t{, where x, and x, are plane Cartesian coordinates. We assume
here that the flows are free of shock waves and contact discontinulties, and
are therefore isentropic and potential. Their potentlality follows from
Thomson's theorem, which is valid in this case by virtue of the fact that
the flows contain weak discontinuities only.

In the case where the planes F, and P, begin to withdraw according to
an arbitrary law, the solution of the problem can be sought in the class
of double waves. The suthors of {1] solved the problem of the motlon of two
mutually perpendicular pistons according to an arbitrary law in an isothermal
gas in the class of double waves., They also formulated the Goursat problem
for the double wave equation for the motion of two pistons 1n a polytropic
gas. Solution of the Goursat problem alone, however, generally does not
permit construction of a complete picture of the motion even with the sim-
piest laws of piston motion. This is because the domains of definition of
the Goursat problem usually do not coincide with the natural domains of
definition of the flows in either the physical space x;, X %, or in the
nhodograph plane, and comprise but a portion of the latter. It i1s necessary
therefore, to pose additional problems in order to f111 out the entire domaln
of flow definition. The present paper 1s devoted precisely to the posing of
such supplementary problems and to the study of possible flow configurations
arising due to the specific discontinuity decomposition which oceurs when
the pistons begin to move with constant velocities. The flow reglon here
consists of the regions of the double self-similar waves and simple waves,
and the regions of constant motlon. The Goursat problem and the mixed prob-
lems for the double wave equation are solved numerically by the method of
cheracteristics as long as the double wave equation 1s of the hyperbolic type.
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The use of the method of characteristics in the hyperbolic case permits
complete solution of several problems on the motion of pistons when a vacuum
zone arises in the reglon adjacent to the line where the planes /P, and
P, intersect. A vacuum zone may not arise in the general case with small
velocities V¥, and V, {as compared with acoustic speed in the unperturbed
gas), however, in which case a line of parabolicity of the double wave equa-
tlon and beyond 1t a region of ellipticity of this equation generally arise
in the neighborhood of the line ¢ In the present paper, we shall concern
ourselves only with the regions where the equation under consideration is
hyperdoliec.

The particular case of our problem where one of the planes P,, P, remains
motionless while the other is moving with an infinite velocity (efflux into
a vacuum) 18 considered in [2]. Analogous particular problems for three-
dimensional self-similar flow are studied in [3]. The problem of unigueness
of the solutlons will not be dealt with.

2., Let us consider the problem of contiguity of flows of the double and
simple wave type, and some of the properties of flows in the event of such
contigulty which we shall need below, The systems of e?uations des%rlbing
aimple and double waves for the self-similar case (see [4 and 5]) can be

written as v—1
wm? 4 w?=1, u'b+w— (5 84 mur 4 ) =0 (2.1)

for simple waves, and as
Y—3

Y_jj_’l 8 [{(1 — 6,%) 83, 1 2610:815- (1028 H 5 (82 +6,) +-2=0 (2.2)

E=u+ 508  (i=1,2) (2.3)
for double waves.
ad a8

Here 2 Bt St
w=ui(8), O=:"7C Oi=g5., Ou=grg,

the prime indicating differentiation with respect to @ .

Simple waves in the hodograph plane u,, up have a certaln corresponding
curve !(u;, %z) = 0 ; double waves have a corresponding region S 1in which
the function © = 8{u,, uz) is defined.

The category to which Equation (2.2) belongs is determined by the sign of
the expression 7 = @,°+ ®,2— 1 ., For R > O, Equation (2,2) is of the
hyperbolic type.

The equations of the characteristic strip for (2.2) are
(1 — 8,%)du,? — 26,8,duduy + (1 — 8,?) du2 =0 (2.4)
d8 = B,du, -+ B,du, {2.5)

(1 — 8,%) d8:duy + (1 — 82) dBduy + (L 3)((1f3i T) gs’) T4 gudu, =0 (2.6)

Property 2.1. If the curve ¥(u,, upz) = 0 in the hodograph
plane corresponds to some simple wave which 1s contiguous to the double wave
region along 1t, then characteristic equation {2.4) is satisfiled along this
curve,

Thils property follows from the relation
(8yduy + Byduy)? == duy? + du 2 (2.7

which is a consequence of (2.1), (2.5), since the function @ 1s continuocus
in passing through the curve Y(ul, ugj -0 .

We note that in the case of an arbltrary simple wave, the existence of
@, and ®; such that condition (2.6) is fulfilled cannot be guaranteed for
the entire specified curve ¥(u,, uz) = O .

In fact, let us fix in the plane ¢£,, €, some point £,°, 7,° with
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specified wu,°, u,°, ?° through which the line separating the simple and
double wave regions passes. Then, replacing ©, by @, in accordance with
(2.5), we obtain from (2.6) the following ordinary nonlinear differential
equation for the function @ :

2(8:— @) 6y - (92— 1) (6; —g) 1—3{& +

1
‘o
(v—1)6
Here @ acts as the independent variable, the initial data obtained from
(2.3) are of the form 0,(®°)=0,° , and y,’= o(@) 1s an arbitrary function.

Thus, it can generally be asserted that ©, is defined only in some neigh-
borhood of the point ®@°. However, as we shall see below, in the case of
our two-piston problem the simple waves to which the double wave must be
made contiguous are of special form, and characteristic strip condition (2.6)
is fulfilled for all @ , i.e. along the entire line V¥(u,, uz) = O .

We note that Formula (2.7) implies the inverse property: any character-
istic of Equation (2.2) corresponds to some simple wave.

Property 2.2. If the curve ¥(u,, 4p) corresponds to a simple
wave, being the first-family characteristic for the double wave equation,
then the equipotential lines of the principal quantitles in the simple wave
(straight 1ines in the plane £,£, (2.1)) touch the second-family character-
istics at the points of the contiguity curve which corresponds to the curve
¥(u,, uz) = O 1in the plane ¢£,€, .

Parametrically, the second-family characteristics are given by Equations
(2.3), 1n which y, and y, are replaced by their corresponding expressions
in terms of ©® . Let the vectors (bu,, 6uz) end (du,, du,) determine the
directions of the tangents to the characteristics of the first and second
familles in the plane wu,, u,, respectively. Expressions (2.1) imply that
in order to prove the foregolng property it is sufficient to verify the

relation
T = 8uydE; + Bugdfy, = 0 (2.8)

where the differentials dg,, d§, correspond to the second-family character-
1stics. Representing T as

= 8uy (du.l + T_;} 8,40 -+ 1:2“_1 9d61> + 8ug (dug + ‘f_%i 8,6 - I_;_.i adea)

[(r—3) (1 + 62 —208,) + 4 (1 —¢7)] =0

and making use of relations (2.4) to (2.6) and Formula
Supduy  1-— 62
6"2 dug 1 — 8]2

which follows from (2.4), we finally obtain

6u2 T —1 6182 1 8 2

=2 s — duy? i — 0?) dug® — 2610, duzdug] =0

Tus 3 1-612K 12) dus® - ( 2?) dugy 18 dusdus]
Property 2.3 . If the double wave 1is contiguous with a one-

dimensional simple Rieman wave of the form

u = a8 + fy, ug = 08 + P, (2.9)

where o, and 8, are constant and q,2+ ap®= 1 (by & rotation the coordi-
nate axes, this case readily reduces %o that where, for example, u,= 0 ),
then the line of contliguity is analytlically determinate in the plane §g,8,.

In fact, making use of the relations for aq;# O and az# 0 which follow
from (2.9), 46 "
duy 118; + 282 =1 1. 2 (2.10)
d—u—z——-a?’ 181 - 426; s dBg ar

we reduce Equation (2.6) to the form
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26, 1 — (1 — 0:80p — a2 (1 — 6:) o d8 _
"= 9 a8+ (1@ b Ty —1 & @10
Integrating (2.11), we obtain
¥—3
(7—3)[e,ﬂ+ (1;_“&)’]4-44_09 =i (1 % 3) (2.12)
oy
1 .
o 62 — :T: 6:;+1n6+4+C=0 (1 =3) (2.13)

where ( 18 an integration constant determined from the conditions of the
problem. Formulas (2.3) then immediately imply the equations giving the
line of contiguity in parameteric form

g =6+ 5+ 11 06, (2.14)

where @, must be replaced by their expressions in terms of € 1in accordance
with Formulas (2.10) and (2.12), and where @ acts as a parameter.

3. Let us now describe the method of solving the problem stated in the
introduction.

We first consider the question as to the conditions which the function
8(u1 Ug) describing the double wave must satisfy at the movable wall (pis=~
tion). Let the equation of motion of the rectilinear movable wall at the
coordinates £,, £; be of the form

@b+ aky + a3 =0, a; = const (3.1)
Its normal velocity is la3V]fa1’-F a?. From the condition of no gas flow
through the wall we have
ayuy + aguy - a; =0 (3.2)
fubetituting g, according to Formulas (2.3) into (3.1), we have the con-
dition h
alel + a,,e, =0 (3.3)

for the function @ in the hodograph plane along the line (3.1).

Let us consider the region of interference of the simple Riemann waves
(Fig.1) which arises upon withdrawal of the two plane pistons, the angle g
between which 1s acute, at the constant velocities V, and V¥, . The acous-
tic speed (, in the unperturbed gas which prior to the beginning of motion
occupies a dihedral angle bounded by the planes x,= O and xz;= x,cot a
at ¢t = O 1is assumed to be 1 . It i1s therefore necessary to consider the
case 0< ¥V,s 2 /(y —1) , since the case V> 2/ (y —1) (1 = 1, 2) coin-
cides with %he case |, = 2/(Y — 1) , and leads tothe problem of gas efflux
into the vacuum from the dihedral angle whose walls are instantaneously at
the instant ¢ = O .,

It is clear that at sufficlent distances away from the line where the
pistons intersect, when ¢t = ¢, and ¥,< 2/(y — 1) , one~dimensional motions
will occur near the moving walls, and %hat the walls will be contiguous with
the steady-flow regions which are contiguous with the Riemann wave regions
at the weak discontinuities (the lines DF and D,F,) . The Riemann dis-
charge waves, here self-similar, will, in turn, be contiguous with the gas
at rest at the second weak discontinuities (the lines E¥ and ZN,). The
equations of the moveable walls (¢ and 0C, in the coordinates £, and ¢z,

are then
g, = —V,, cosaf, — sinaf, — V, =0 (3.4)

The equations of the lines D% and D,f can be written in explicit form
(Property 2.3). It 1s true that in order to.find the equation of the curve
DE , it is necessary instead integrating Equation (2.6), which 1s in this
case identically fulfilled along Dz(el- 1, ug= 0) , to integrate Equation
(2.2) directly, The latter reduces to an ordinary equation on DX by virtue

t lati
of the re on 48, = 8y,du, + O,du,
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Finally, for the curve DE we have the parametric equations (for vy# 3)
2 1 1 3—v 41 1
=0 2 . T1—1g, Y Gl (c 97—1__7_) 3.5
1 Y__1-{~ 5 £ 5 « T3 (3.5)
where the integration constant

-3

Coa=( 1{—:1% + ot 2 ;%)’Tl (3.6)

is determined from the condition of passage of the integral curve throu h
the point F (1, cot $ a ) lying on the bisector of the angle 00C, . Here

6 =2/(y—1) at the point £, 8 =2/(y —1) — V; at the point D
In exactly the same way, for y = 3 we integrate (2.2) along DF to
obtain
£1=26 —1, £2=0 1 cot?(0/2)—21n 8 3.7

Analogous equations which follow from Formulas (2.12) to (2.1%) can also
be written for the curve D,Z . The radicand in Formula (3.5) for

2 _yce< 2.
T—1 T—1
and in Formula (3.7) for any O < g 5= #r 1s positive, so that the double

waves can be contiguous with the simple Riemann wave along &ll of DE (the
same applies to D,%).

In Fig- 1 (and then in Figs. 3, 5,7) the reglons denoted by the number
(1) correspond to the regions of steady flow or rest, those denoted by the
number (2 to simple wave regions, and (3) to double wave regions, For
the problem under consideration, we always construct a solution in which

reglons of the type (1) are contiguous with reglons of the type (2),regions
of the type (2¥ are contiguous with reglons of the type {g), but reglons
of the type (3) are not directly contiguous with regions of the type {1).
Then, in accordance with Property 2.2, the lines ¢p and ¢,D, are straight
lines tangent to the curves DE and D,F at the polnts D and D, .
In the region dDED,d,, the
£ A Goursat problem for equation (2.2)
2 () must be solved with data on the
characteristics DF and D,F. In

regions (3) touching the points
¢ and 0,, it 1s necessary to solve
mixed problems with data on the
characteristics 0S5 and ¢, 5, and
conditions of the type (3.3) at

F

Ui

|
|
|
|
|
|
|
1
|
|
|
|
|

4
X £
0 g
) a
p
7] I
:g’,f”’//’/”‘

al

Fig. 1 Filg. 2



Isentropio decompositions of two-dimensional discontinuities 417

the walls 0C and 0¢,,

The form of the characteristics ¢S and (;5; 1is determined after solving
the Goursat problen and constructing simple waves in the regions SCDd and
Sy CyDyd; by means of the solution of the Cauchy problem for ordinary equa-
tion 12.6) with the initial data ©,=0,°, 0,=8,°, respectively, at the points
C and 0, .

We shall show that

0,2+ 6,2>1 qor V,<2/(y—1), y>I, 0<a<,m (3.8)

in all cases.

Inequality (3.8) need only be proved for the point ¢ and arbitraryV,,y,
and q from the indicated region fcondition (3.8§w111 then be fulfilled at
the point (€, ,since the point £ 1lles on the blsector of the angle 0001).

The projections of the vector T=(T,,7,) tangent to the
curve DFE at the point D can then be written as

x4t 141 y—3e—2(1—1) 3 3.9
W= YT Yhiogw—de—atm o B
33—y
—(1+1 a 1= —1
8_(7___§+cm2§)(1 = 1)* (3.10)

_ cot2(@/2)—2In (1 —Vy)—1 . .
n=2 et (1=3) (3.11)

by virtue of equations (3.5) and (3.7).

Along the stralght line 0C,®, =0. Constructihg the straight line D¢
through the point 2 1in the direction of the vector 7, in accordance with
Formulas (2.3) at the point ¢ we have

(r—3)e—4

6,0 =0, 6,0 = 3 3'
' ' 2V (r—3)ly—3)e—(1+D] (v +3) (3.12)
1 co*(a/2)—2ln(1 —Vi)+1
6,°=0, 6= 9 14 cf::/(a)/ D) —nz(ln = 3 ;/*-1) (1 =3) (3.13)

Setting o JE—(HD/(x—3)  qor T3
22 =

cot?2(a/2)—2In(1 —Vy) for Y==3
and >0 for @,°,independentlyof y we have
0,° =1/, (z 4 z71) (3.14)
We now show that

2>1 u.,o<1/1<_&i
'r_..
For the case y=3 this follows directly from the formula for 2% ,since
o Em.
For y#3 we consider two possibilities:
3=y _
1<T<3  for 0<(1—T_‘2"_1V1)*-1<1

We have

3—7¢ 2 : P)

3= 3=y
a=T+F1 [1—(1— l———ivl)**‘ ] et 2 (1= T

S—r

g e G e L R Fre B
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In the second case
38—y

(1_ 7_;_1;/;)‘:‘>1

We have [ 3—y 3—v

2=1t1 _r—lp Nt 2%/, y—1 Y1 g
=3 1—1—n ]+ cor® 2 {1 f)ﬁm) > cot? 2 >1

From (3.14) for a#>1 it follows that 8,°>1, so that inequality (2.8) is
proved. Hence, we can always compute the mixed problem in regions of the
type (3) touching the points ¢ and ¢,, since the hyperblicity of Equation
(2.2) has been proved. Here the straight line D( separates the steady flow
region of the type (1) from the simple wave region SC0d.

-

4
_0_6‘ V=44 ll,
n £
T —
e
ﬂ’
P
K S~
lid 8 p\-06
Fig. 3 Fig. 4

The determination of the subsequent configuration of the flow region de-
pends substantially on the actual values of V,,a,and y. It appears that such
détermination can only be effected numerically, the onw construction algo-
rithm requiring solution of Goursat problems and mixed problems (near the
walls), as well the construction of simple waves, It turns out that for fixed
q and y in the square [0,2/ (y-1)Ix[0, 2/(y-1)] of the plane V,,V; there al-
ways exists a curve which passes through the points (0,2/(y -1),0Y and sepa-
rates the square into two reglons. For V, belonging to one of these regions
there always arises a vacuum zone, and, as calculations show, Equation(2.2)
remains hyperbolic. On the line of contigulty with the vacuum zone (@=0),the
functions @, and @, become infinite, but .in Such a way that 8@, remains. The
other region is characterized by undetached flow, but 1in the neighborhood of
the point O there appears a line of paraboliclity of Equation (2.2),and deter-
mination of the entire flow requires solution 'of a boundary value problem
Yith)a portion of the data on the degeneracy (parabolicity) line for Equation

2.2).

Fig. 2 shows the domain of definition of the flow 1n the hodograph plane.
The 1lines D'E’, D,/E’, a'D’, dy'Dy correspond to simple waves,the
Goursat problem must be solved in the region 4'D'E’D,'d\’, and mixed prob-
lems in the regions (O’'D'd’ and Q'D,'d,.

§. Given below are the results of actual computations for certain values
of the parameters g, y, and V, (in the region of hyperbolicity of Equation
{2.2)). The Goursat and mixed proplems were solved by the method of Massot
characteristics with the iterations performed on a computer. As a rule,
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30-40 computation points were taken along each characte;iatic. The applied
program made 1t possible to carry out "straight through” computation of the
configurations all the way to the line of contiguity with the vacuum zone
or to the parabolicity line.

¢ ¥=05 M
&,=-05 :f @ 3
@ /\//r—_‘] 4
D /
Iy
)
@
g
(&)
EI
p© 41k
[¢4]
%,
RN 7 A m
{3
0 8 6 &=
Pig.5
&, =-04%
i
(4
12)
R
Q -(3)
&
6 4K ra &=-04
Fig.7 rig.8

Figs. 3,5,and 7 show the configurations of the flow region in the coordi-
nates £, ,€, and indicate the behavior of the characteristics of the system
of equations in self-similar variables which describes the glven motion for
the cases a-ﬂ/?,y-3, vy =V =l=0.6,0.5,0.4. The regions of steady flow simple
waves, and double waves are denoted by the numbers (1),(2), and (3),respec-
tively. For the cases V=0.6, 0.5, a vacuum zone arlses in the neighborhood
of the point ¢: specifically, ©=0 on the line 4B. The regions ¥SX and ¥, 5 X
in Fig.5 are of the type (2).

The case where V=0.4% 18 an example of undetached flow. The line GG, in
Fig.7 is a parabolicity 1line; the characteristics in the reglon GLG, touch
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¢G, (in the plane g, ,£,). The regions Q,7¢ and ¢, 7, R, are of the type (1),
the regions 7QL and T,¢Q,L of the type tz), and QLG, @,LG,, GLG, of the type
(3). The function ® changes little along ¢, and is equal to approximately
0.12. The critical veloclty V,=V,=V*,which separates the cases of the appear-
rance of a vacuum zone and the appearance of a parabolicity line 1s equal to
0.42 for the given a and y.

Fig.4,6,8 also show the flow reglons and characteristics in the hodograph
plane for V=0.6,0,5, O 4, The points in the hodograph plane corresponding to
the points of the plane g, .2, are accgmpanied by primes. The llines D°P*,
D,°P°, D,"P", P's", P's,,P'R", P'R{,L°R", L°R, correspond to simple waves.

The region 0 G°L°G,’ and the line of para-
Y bolicity 6°H°G, * are shown on a magnified scale
u=-0 in the hodograph plane in Fig.9. The boundary-
a3 valueproblem for Equation (2.2) must be solved
! in the reglon 0°C°H’G, . As computations show
the region of ellipticity of Equation (2.2) in
the plane u.,us 1s very small.
The autMtors are grateful to V.A,Suchkov for
his helpful comments.
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